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ABSTRACT 

ESPRIT processing appears to be the best of the known spectral-analysis techniques. It provides the 
highest resolution and has no spectral splatter. By applying matrix eigenstructure analysis, it gives a direct 
answer to the direct question "What frequencies, real or complex, are present in the data and what are 
their amplitudes?" Conventional Fourier techniques, as well as some of the other higher-resolution 
methods, answer the less direct question "What amplitudes, applied to a set of regularly-spaced real 
frequencies, best represent the data?" Then comes the problem of interpreting the amplitudes. 

These attributes of ESPRIT, in the two-dimensional version described here, make it a natural for 
radar signal processing, where it answers the need for high-resolution imaging, free of sidelobes in range 
and Doppler, and for high-fidelity target feature extraction. For example, the uncertainty in the 
scatterering-center locations in an ESPRIT image extracted from high-quality static-range radar data 
collected over a bandwidth of 1 GHz is just a few millimeters; for conventional Fourier processing of the 
same data the uncertainty is many centimeters. The signature of the base edge of a perfectly conducting 
cone extracted from static-range data by ESPRIT agrees accurately with the signature predicted by edge- 
diffraction theory. 

This report starts with a mathematical model for the radar data, describes a technique for 
"resampling" the data to achieve a more perfect fit with the ESPRIT data model, summarizes the two- 
dimensional ESPRIT algorithm itself, and presents examples of its performance. The appendix covers the 
details of this least-mean-square version of ESPRIT, including an enhancement that allows the scatterers 
to be tracked individually. The algorithm properly distinguishes between target locations having one 
coordinate in common, and it automatically associates correctly in pairs each entry in the list of ranges 
with the corresponding entry in the list of range rates. 

in 
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1. INTRODUCTION 

Mathematically, a range-Doppler radar image is created by applying two-dimensional spectral 
analysis to a sequence of wideband radar returns. The two dimensions are time and frequency; they 
express the variation in time over the whole sequence of returns of the amplitude and phase of the 
frequency components in each return separately. Generally speaking, each two-dimensional spectral 
component identified in the sequence of returns is associated with a particular scattering center on the 
target. Its phase behavior, as a function of frequency and time, determines the slant range and cross range 
of the scattering center. Its amplitude coefficient determines the effective radar cross section of the 
scatterer. 

This spectral analysis is conventionally performed today by carrying out a two-dimensional digital 
Fourier transform on a rectangular array of samples taken from the radar returns. Over the last decade or 
so, the more powerful spectral analysis technique known as ESPRIT (Estimation of Signal Parameters via 
Rotational In variance Techniques) [1,2] has been developed that achieves a very significant improvement 
in spectral resolution. Other important advantages of ESPRIT are that there are no range or Doppler 
sidelobes to confuse image interpretation, and that ESPRIT can be used to extract accurately the radar 
signatures, in amplitude and phase, of the individual scattering features of the radar target. 

Both the Fourier transform and ESPRIT methods of spectral analysis recast the data into a weighted 
sum of complex exponentials of different frequencies. The advantages of ESPRIT arise from its singular 
ability both to identify and quantify with precision the actual frequency components present in the data. It 
estimates the complex amplitude and frequency of each component, accepting even frequencies that are 
complex, a feature that allows decaying or growing exponentials to be accommodated. The Fourier 
transform, in contrast, achieves its Procrustian fit to the data by adjusting only the amplitudes of a preset 
list of regularly spaced real frequencies. 

Figure 1 compares, for an aluminum cone target, the X-band images extracted by ESPRIT and by 
Fourier processing from the same block of static-range backscattering data. The data block was selected 
to cover only a narrow angular sector centered on nose-on aspect; the bandwidth of the data was 1 GHz. 
The ESPRIT image consists simply of the estimated locations of the principal sources of the scattered 
field. The Fourier image, since these locations are not directly available, is the conventional contour plot 
of the discrete two-dimensional Fourier transform of the windowed radar data. The improvement that 
ESPRIT processing provides, both in sharpness and spectral splatter, is striking. It sees clearly and places 
accurately all three slots, resolves reliably the two "edges" of slot 3, the largest diameter one, and 
recognizes, though not accurately delineating, the extended nature of slot 2. (The phantom scatterer lying 
behind the base of the cone is the result of the doubly diffracted ray that crosses the flat base of the target 
from one edge to the other [3].) 
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Figure 1. The Fourier and ESPRIT X-band radar images of an aluminum round-nosed cone target at nose-on 
aspect derived from measured static-range data of I GHz bandwidth. The target's rotation axis and the radar's 
magnetic-field polarization on transmit and receive were vertical (HH polarization); the target's body-axis of 
symmetry and the radar line of sight were horizontal. 

Figure 2 shows, for the full 360° extent of the same data collection, the close agreement between 
the complex diffraction coefficient of the base edge of the target, extracted by means of ESPRIT 
processing, and the coefficient predicted by the geometric theory of diffraction [4]. The magnitude of the 
diffraction coefficient was equated directly with the absolute magnitude of the amplitude coefficient 
associated with the scatterer at the base edge. Its phase was evaluated by recentering, by a process of trial 
and error, the phase of the amplitude coefficient from the axis of target rotation to the base edge of the 
target. Since the target motion was that of pure rotation, this process involved simply multiplying the 
complex amplitude coefficient of the base edge by the factor exp{i2krcos(0-0Q)}, in which r and 
0Q were adjusted to attain as closely as possible a piece-wise constant-phase behavior. 
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Figure 2. The complex diffraction coefficient of the base edge extracted by ESPRIT processing, from the same 
measured static-range HH-polarization data used for Figure 1, compared with the coefficient predicted by the 
geometric theory of diffraction. 

The concept behind the ESPRIT technique appeared earlier in the systems analysis literature (see 
[5], for example) and was presented in the vocabulary specific to that specialty. A recent manifestation of 
that approach, focused more directly on the radar imaging problem, appears in [6]. The ESPRIT rendition 
has achieved wider recognition because it is presented in the more familiar terms of applied mathematics 
and its application is more direct. It was used to produce radar imaging and feature extraction results 
reported in [7], but was not further described there. The version presented here is an improved version of 
that earlier one. 

There are other high-resolution spectral analysis techniques. Notable are the minimum variance 
method of Capon, Burg's maximum entropy method, Pisarenko's harmonic decomposition method, the 
Yule-Walker auto-regressive method, and Schmidt's MUSIC (Multiple Signal Classification) method. 
They are described and evaluated by Proakis et al. [8], who find that only MUSIC can match the 
resolution of the ESPRIT algorithm. Moreover, only ESPRIT itself estimates directly the frequencies, real 
or complex, present in the data. All the others depend on interpreting what is essentially a pictorial 



presentation of the spectrum. Comparison can be made with the Fourier method, for example, for which 
the estimated amplitude coefficients define the Fourier spectrum that must then be the subject of a 
numerical search to evaluate the locations and amplitudes of the spectral components. This is 
inconvenient in one dimension; in two it is a real problem. 

Some methods specifically addressing the radar resolution problem have been proposed. They are 
intuitively appealing, but are also circuitous in the way they seek to answer the basic question "What 
frequencies, real or complex, are present?" One is "bandwidth extrapolation," a data-extension method 
initially proposed by Bowling and successfully implemented by Cuomo [9]. In effect, it applies 
conventional Fourier processing to data that has been extrapolated outside the collection bandwidth. The 
spectral splatter problem of Fourier processing remains. Another is "high-definition vector imaging" by 
Benitz [10], which presents the spectral analysis problem as that of probing a field of view with a narrow 
antenna beam. The method attempts to overcome the spectral splatter problem by applying an adaptive 
nulling technique to suppress targets in the sidelobes of the beam. Again, it is a roundabout way of 
answering the basic question. 

At first glance, the greatly improved resolution attainable with the ESPRIT technique would appear 
to be inconsistent with Shannon's sampling theorem, which imposes a strict limit on the number of 
degrees of freedom in a time- and bandwidth-limited signal. Since ESPRIT allows scatterers very close 
together to be distinguished from one another, could it not therefore separately resolve an arbitrarily large 
number of scatterers? The answer is, simply, no. Like Fourier imaging, the maximum number of 
scatterers it can resolve is limited by Shannon's sampling theorem. The advantage of ESPRIT is that it 
can accommodate a much less uniform spacing of the scatterers and still resolve them all. 

The following sections start by introducing the radar data model, including a technique of 
"resampling" for overcoming its imperfect fit with the data model required by ESPRIT, then describing 
the principle of the two-dimensional ESPRIT method itself, and finishing with some more examples of 
the algorithm's performance. The appendix covers the details of this least-mean-square version of 
ESPRIT, including an enhancement that allows the individual scatterers to be tracked. The algorithm 
properly distinguishes between target locations having one coordinate in common, and it automatically 
associates correctly in pairs each entry in the lists it evaluates of ranges and range rates. 



2. DATA MODEL AND RESAMPLING 

The sampled backscattered radar return ymnat frequency f0 + nAf from a cluster of uniformly 
moving point targets at range rs + usmAt can be expressed as the weighted sum 
ymn = l,sws exp[/4;r(/0 + nAf)(rs + usmAt) I c], where rs and us are the range and range rate at time 
zero of point target s. In practice, these samples could be generated from a sequence of wideband 
uncompressed chirp radar returns, properly equalized in phase and amplitude to remove any 
nonuniformity in frequency and time of the transmitted signal and of the transfer function of the complete 
signal path from transmitter to received video. This model can accommodate mutual coupling between 
the point targets; a double reflection, for example, would cause a spurious target to appear—a target in the 
post-processing image of the cluster corresponding to no actual target. It can also accommodate a simple 
exponential variation in time or frequency in the strength of the return, which allows it to model cross- 
section variations in frequency and aspect. These variations would manifest themselves as non-zero 
imaginary parts of the range rs and range rate us. 

In this weighted sum formula for the data, the presence of the cross product i4mnnAfAtus I c in 
the exponent prevents it from conforming strictly with the signal structure I,sasexp(imas+inj3s) 
required for ESPRIT (or, for that matter, for conventional Fourier) spectral analysis. This term is 
negligible, if the time and frequency spread of the data are small enough. But tests have shown that it can 
have a significant negative effect on ESPRIT processing for practical values of these spreads. Fortunately, 
in cases where it is a problem, it can be removed by resampling the data. If the data samples are arranged 
in a rectangular array with m as the row number and n as the column number, this technique involves 
interpolating along each column of data to achieve in effect a frequency dependent sampling interval for 
each column. It amounts to choosing the new time sampling interval At' to satisfy the constraint 
(/0 + nAf)At'= f0At. A standard spline interpolation works well. 

At frequencies below the center frequency of the data window, the resampling process increases the 
total time width of the data window. This implies that, to avoid asking the spline interpolation to 
extrapolate at the ends of the window, the number of samples provided initially must be greater than the 
number required for data processing by at least the factor 1 / [1 - BI (2/0)], where B is the bandwidth of 
the data window and f0 its center frequency. To maintain symmetry, the difference between the two 
numbers must also be even. 

Resampling casts the data into the required form for the data array Y: 

[Y]mn = ymn = £ A exp(imas + inßs), (1) 

with as = 4nf0usAt Ic, ßs - 47trsAf Ic, and as = wsexp(/'4^0rs /c), where now At is the original 
time sampling interval and the ranges of both m and n over the rows and columns of Y are centered on 



zero. The ESPRIT algorithm estimates the parameters exp(/orj) and exp(ißs) for each point target s 
contributing to the data array by manipulating the data array Kin such a way that they become the 
solutions of two coupled eigenvalue problems. From them, the extraction of the range rs and range-rate 
us is a straightforward application of the above identities. The addition of a motion model for the target 
then determines the cross range, and the complex amplitude as is evaluated by a least-squares fit 
procedure applied to (1), the a, and ß, now being known quantities. 

Although this data model can accommodate exactly a complex of point targets moving uniformly, 
with or without cross coupling, and with scattering amplitudes having exponential frequency and time 
dependencies, it is not exact for the rotary motion common to target imaging and feature extraction. 
Without further processing, for these applications the data model is an approximation. On the other hand, 
in most cases, limiting the angle swept out by the arc of motion covered by the data set reduces the 
problem to insignificance. 



3. TWO-DIMENSIONAL ESPRIT 

Two-dimensional ESPRIT spectral analysis exploits the fact that, according to the mathematical 
model (1) of the data, the contributions of spectral component s to any two equally sized subarrays of the 
data array Y differ only by a shift factor determined by the number of rows and columns by which the 
subarrays are offset from one another. For an offset of p rows and q columns, that shift factor is 
exp(ipa5+iqßs), and since it depends on s, the two subarrays are, in total, two different linear 
combinations of all the individual spectral contributions. Of special significance are the values expO'flfJ 
and exp(//?5) taken by the shift factor when one of the pair p and q is one and the other zero. 

This key feature of Y makes it possible to rearrange and select its elements, in the manner described 
in the Appendix, to define three "shift" matrices U0, Ut, and Uf of block-Hankel structure with the 
following properties: 

1. Within each matrix, each column is a different linear combination of all the individual spectral 
contributions. 

2. The rank of each matrix, in the absence of noise, is equal to the total number S of spectral 
components in the data. (This assumes that the smaller dimension of each matrix is no less than 
S.) 

3. The contribution of spectral component s to U, or Uf differs only by the shift factor 
exp(/«s) or expO'/jf) from the contribution of the same spectral component to U0. 

These properties imply that in the absence of noise there exists a vector xs that can recombine the 
columns of U0, U t, and U f to extract the particular spectral component s and also that the result of the 
extraction on the three matrices differs only by the factors exp(ias) and exp(/$). Specifically, they 
imply Utxs=U0xsexp(ias) and Ufxs = U0xs exp(iß), two coupled generalized eigenvalue 
problems. The exponents of their eigenvalue solutions, according to the derivation in the last section, are 
proportional to the range and cross range of target s. 

The details of the solution are covered in the Appendix, including the initial singular-value 
decomposition processing of the data array to strip away noise; evaluation of the three shift matrices UQ, 
U,, and U f; a procedure for achieving the correct pairing of the S eigenvalues of each of the two 
eigenvalue problems; and a final gradient-following coupled least-mean-square fine tuning of the paired 
solutions, which in the presence of noise are not independently determined. This last process provides the 
opportunity for following the movement of the separate scatterers as the target rotates by automatically 
keeping track of them. 

This completes the evaluation of the range/range-rate pairs for all the targets, the more 
computationally intensive part of the spectral analysis. The second part is the evaluation of the amplitudes 



as of the spectral components. These are evaluated readily using standard least-mean-square techniques 
to fit the formula (1) for the elements of the data array to the measured data array, using the now-known 
values of the as and ßs. 



4. MORE RESULTS 

Some more ESPRIT X-band images from the same data are shown in Figure 3. 
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Figure 3. ESPRIT X-band images from different aspects and 360-composite images, both in B&W and, to include 
amplitude information, in false color. The images were extracted from the same measured static-range X-band HH- 
polarization radar data used for the previous figures. 

The 0° aspect image (top left panel) has a higher amplitude threshold than that of Figure 1, and so 
the double-bounce "phantom" scatterer behind the base no longer appears. Also, a wider range of aspect 
angles was used, so the scatterers lie closer to the target outline. (The radar return appears to come from 
what is essentially a Fresnel zone in the shape of an arc of the base edge or slot. Close to nose-on aspect, 
this zone covers a greater length of arc, and so has an effective center of radiation displaced significantly 
towards the center of curvature of the arc.) 



At -30° aspect (top right panel) only the scatterers along one side of the target can be seen and they 
are now located right at the outline of the target. Those on the other side are in shadow. 

The lower two panels show the composite images that result when the images of all aspects from 
-180° to +180° are superimposed on the same plot. For the black and white image, the threshold was set 
high enough to reject the scatterers on opposite sides of slot 2, but the greater cross section of the base 
edge comes through strongly, clearly outlining its physical shape. The color composite, with the extra 
degree of freedom color provides, shows all the significant scatterers, including, faintly, the "phantom" 
scatterer seen in Figure 1. 

As an illustration of the effect of signal-to-noise ratio on location uncertainty, Figure 4's three zoom 
views of the -30° image in Figure 3, all to the same scale, show the scatter of points generated by the 
ESPRIT algorithm for three different scatterers. (The processing window was moved, a fraction of a 
degree at a time, over a narrow range of aspects centered on the 30° aspect. At each position, a fresh 
estimate of the location of all the scatterers was made. Thus, there are as many points plotted for each 
scatterer as there were distinct processing-window positions.) The higher signal-to-noise ratio of the radar 
return from the base reduces the uncertainty in its estimated location. Also apparent is the smaller 
uncertainty in slant range than in cross range. 

Since the ESPRIT algorithm, in the form described here, allows the individual scattering centers to 
be individually tracked, their trajectories in slant range and cross range can be plotted as separate 
continuous curves. Figure 5 shows the result. Each scatterer has uniquely associated with it a slant range, 
a cross range, and a complex diffraction coefficient over a wide extent of aspects for which it is not 
shadowed or too small to be seen, and so can be assigned a unique color. The measured curve in Figure 2 
for the backscattering cross section of the base edge could in fact have been directly copied from Figure 5 
in just two operations, one for the section extending in aspect from -190° to about -90°, and the other for 
the section -10° to +190°. The cross-range plot shows the narrowing, in the vicinity of nose-on incidence 
and "base-on" incidence, of the spacing between the members of the pairs of scatterers associated with 
the base edge and with slot 3, consistent with Figure 1. 

10 
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Figure 4. Narrow-angle imaging with ESPRIT, including zoom views showing the smaller location uncertainty that 
greater signal-to-noise ratio provides. 

The upper panel in Figure 5 compares, as a function of aspect, the normalized mean square error 
between the array of complex data samples in the static-range processing window and the corresponding 
array of complex data samples reconstructed from the point-scatterer model of the target implied by the 
ESPRIT analysis. The error is low enough to suggest that most of the energy in the original data is 
accounted for. Significant is the fact that the error is low near 0° aspect and near 180° aspect, 
corresponding to regions in which the signal-to-noise ratio is higher and the scatterers are tracked more 
faithfully. 

11 
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Figure 5. 360° trajectories of the individual tracked scatterers, in slant range and cross range. Apparent is the 
narrowing, in the vicinity of nose-on incidence and "base-on" incidence, of the cross-range spacing of the pairs of 
scatterers from the base edge and from slot 3, consistent with Figure 1. The bottom panel shows the corresponding 
backscattering cross sections of the individual scatterers. The top one shows the normalized mean square error 
between the array of points in the static-range processing window and the array of points reconstructed from the 
point-scatterer model of the target implied by the ESPRIT analysis. 

Figure 6 shows an alternative way of looking at the errors in the ESPRIT analysis. It shows the 
backscattering cross section of the target as a function of aspect, at the center frequency (10 GHz) of the 1 
GHz band covered by the data, compared with its backscattering cross section reconstructed from the 
ESPRIT analysis. The agreement between the two is seen to be very good. The same reassuring result is 
obtained when the comparison is made at any other frequency in the 1 GHz data band. 

12 
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Figure 6.  The backscattering cross section of the target as a function of aspect, at the center frequency of the band 
covered by the data, compared with its backscattering cross section reconstructed from the ESPRIT analysis. 

Figure 7 is a closer view of the scatterer trajectories. It plots the same quantities as Figure 5, but 
restricts the aspect extent to within ±30° of nose-on. More readily visible here than in Figure 5 is the 
narrowing near nose-on aspect, described above, of the cross-range spacing of the pairs of scatterers 
associated with the base edge and with slot 3. It also shows more clearly the separate tracking of each 
scatterer in the pair right through nose-on aspect. The pairs of scatterers associated with slots 1 and 2 are 
evidently too close together to be separately resolved, and so only one scatterer is tracked for each slot, 
but the cross-range trajectory shows evidence of mutual interference between the two members of each 
pair. 

13 
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Figure 7. Scatterer trajectories for aspects within ±30° of nose-on aspect. 
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5. CONCLUSIONS 

ESPRIT processing appears to be the best of the known spectral-analysis techniques. It provides the 
highest resolution and has no range or Doppler sidelobes. By applying matrix eigenstructure analysis, it 
gives a direct answer to the question "What frequencies, real or complex, are present in the data and what 
are their amplitudes?" Conventional Fourier techniques, as well as some of the other higher-resolution 
methods, answer the less direct question "What amplitudes, applied to a set of regularly-spaced real 
frequencies, best represent the data?" 

These attributes of ESPRIT, in the two-dimensional version described here, make it a natural for 
radar signal processing, where it answers the need for high-resolution imaging and target feature 
extraction. It can provide a tracking capability useful both for the construction of the motion model of the 
target and for isolating and measuring automatically the scattering parameters of a chosen scatterer. 

15 



APPENDIX 
THE ESPRIT DETAILS 

THE COUPLED EIGENVALUE PROBLEMS 

The input to the two-dimensional ESPRIT algorithm is the resampled data array Y having, in the 
absence of noise, the mathematical form defined in (1). Provided aliasing in both dimensions is avoided, 
this structure implies that every two-dimensional subarray of Y of a given size will be a different linear 
combination of the same S two-dimensional spectral components of the form exp(im(Xs +inßs). Each 
spectral component arises from a different point scatterer. It follows that if the elements of each of these 
subarrays are rearranged in some systematic manner into a single column vector, and these column 
vectors are then concatenated to form a matrix H, each column of H will be a different linear combination 
of the same S spectral components. In addition, it follows that no two spectral components can have the 
same vector contribution to any column unless their corresponding point targets lie in the same place. 
This implies that there will exist a set of vectors xs, one for each point scatterer, such that the column 
vector Hxs will differ by only a scalar factor from the vector contribution of point scatterer s to any one 
of the columns of H. 

The now-standard way of building H, the first step of the algorithm, is rearranging the elements of 
Y into block-Hankel form. This is accomplished in two steps. First the Hankel matrix form of each 
column of Y is created, in which element (p,q) of the Hankel matrix is element(p + q-l)of the 
corresponding column. Then these Hankel matrices are arrayed to form the block-Hankel matrix, in which 
block (p, q) of the block-Hankel matrix is the Hankel matrix formed from column (p + q -1) of Y. 

The second step of the algorithm is applying singular value decomposition to reduce the second 
dimension of H to match its essential rank. That is, H is decomposed as H = ULV and only the columns 
of U corresponding to the significant singular values (the elements of the diagonal matrix X) are 
retained. (Here, following the convention used by MATLAB, the notation A' is used to denote the 
conjugate transpose of A.) One suitable test for significance is the size of the singular value relative to the 
maximum singular value. Another is the absolute size of the singular value. In the noise free case, only S 
non-zero singular values will exist, and so only S columns of U will be retained. Typically, the number of 
rows will be larger than 5. 

The matrix U retains the important property of H that there will exist a vector xs such that the 
column vector Uxswil\ differ by only a scalar factor from the vector contribution of point scatterer s to 
any one of the columns of H. 

The third step exploits the fact that, by virtue of the block-Hankel rearrangement of Y, the 
contribution of point scatterer s to any one row of U differs from its contribution to the previous row in 
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the same block by the factor exp(/«r), and from its contribution to the corresponding row in the 
previous block by the factor exp(/$). This implies that by deleting specific sets of rows1 of U, three 
versions U0, U,, Uf of U can be created such that, in the absence of noise. U,xs =exp(ias)U0xs and 
Ufxs =e\p(ißs)Unxs. By multiplying both sides of both equations by (Ü'„''U0)~'U'„', these can be 
rewritten as the two coupled eigenvalue problems 

(R,-TsI)xs=0 (2a) 

{Rf-v,I)xs=0 (2b) 

where the square SxS matrices /?, and Rf are given by 

Rh=(U()'Uoy
lU0'Uh,(h = t,f) (3) 

Ts =exp(ias), vs = exp(/#) and / is the identity matrix. 

The eigenvalues, exp(/«() and exp(//f), are the crucial parameters, since from them the range rs 

and range-rate us of the scatterers are evaluated using as = 4rf()usAt I c and ßs = 4nrsAf I c. 

EIGENVALUE PAIRING 

Solving the eigenvalue problems (2a) and (2b) separately would deliver two lists of eigenvalues. 
Unfortunately, the elements in the two lists would not necessarily be in the same order. This means that 
the pairing information, necessary for associating the eigenvalues of the two lists in pairs, one pair per 
scatterer, is missing. One simple way of avoiding this problem is to note that since the eigenvectors of the 
two eigenvalue problems are the same, the eigenvectors can be evaluated just once, as the eigenvectors of 
the weighted matrix sum c,/?; +c2Rf, where the scalar weights c\ and c, can be chosen essentially 
arbitrarily. Then the properly paired eigenvalues corresponding to each (normalized) eigenvector xs are 
given by Ts = xs'R,xs and Vs = xs'Rfxs[l 1]. One simple choice for the weights could be c, = l' and 
c2 = 0, but in the presence of noise a more accurate estimate of the eigenvalues is obtained if both 
matrices are brought to bear by making both weights non-zero. 

Deleting from U the last row of each block of rows and also the whole last block of rows creates U0. 
Deleting the first row of each block and the whole last block of rows creates U,. Deleting the last row of 
each block and the whole first block of rows creates Uf . 
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This pairing technique fails in the rare situation in which the weighted eigenvalue sum c{tt + c2 Vf 

for one scatterer happens to be the same as that for another. If that happens, it can be avoided simply by 
changing the scalar weights in the weighted matrix sum cxRt +c2Rf . 

Another pairing technique is described by Piou et al. [6]. 

EFFECT OF NOISE 

In the presence of additive noise, each right side of the two eigenvalue problems (2a) and (2b) will 
be an error vector rather than zero. Now the problem becomes one of finding the eigenvalue pair 
(As, Vs) and corresponding eigenvector xs that together minimize the sum of the squared 2-norms of the 
two error vectors: \(Rt - TsI)xs\~2 + (Rf - VsI)xs ^. 

The calculus of variations applied to this mean-squares minimization problem leads to the 
following set of simultaneous equations for the xs, Ts, and Vs: 

(/?,'-T, * /)(/?, -Tj) + (R, '-Vs * I)(R, - v,I)\xs = 0 (4a) 

t,=x,'Rtx, (4b) 

K=xs'Rfxs, (4c) 

where xs is construed to be of unit norm. 

Their solution can be found using a gradient method starting from initial estimates of the Ts and 
V . These initial estimates are the eigenvalues of the coupled eigenvalue problems (2a) and (2b), obtained 

in the manner described. With them, the matrix in square brackets in (4a) is evaluated and then factored 
by singular value decomposition to determine the normalized vector xs that minimizes the norm of the 
left side of (4a). (This vector is equal to the post-multiplying vector, in the singular value decomposition, 
corresponding to the minimum singular value.) Substituting this vector in (4b) and (4c) yields the updated 
values of Ts and Vs that comprise the estimates for the next iteration. It is found in practice that the 
process converges quickly, making it necessary to use only a few iterations. The inclusion of this gradient 
method as a final step in the algorithm has shown in tests to improve significantly the precision of the 
final values of the Ts and Vs. 

TRACKING 

This technique of gradient convergence to a solution opens the way to a crude but effective method 
of tracking the individual scatterers in range and range rate as they move with the rotating target. 
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A direct application of the algorithm to following the motion of the scatterers would involve simply 
incrementing the data window in time and then, at each location, reevaluating their range and range rate. 
This would not constitute tracking, because a new version of the pairing problem would arise. 
Specifically, unanswered would be the question of which scatterer in the list of coordinates produced at 
the current window location corresponds to any specific scatterer in the previous list. 

The procedure for overcoming this is to use the values of Ts and Vs for scatterer s evaluated in the 
previous window location as the initial estimates of these parameters for the current window location. 
Applying the gradient method, with values for the matrices /?, and Rf evaluated using the current 
window location, then pulls the values into their least-mean squares values for the current window. Of 
course, as with any tracking method, if the current window location is too far from the previous one. any 
one track may jump from one scatterer to another or be lost entirely. 

To take care of the problem that one scatterer may become so weak that the gradient algorithm pulls 
its track into coincidence with that of another, a clean-up routine is necessary to remove duplicates. If the 
duplicates are not removed, the subsequent operation to evaluate the scatterer amplitudes as faces the 
problem of an ill-conditioned matrix. The removal is readily carried out by retaining only one of any 
group of tracks for which the effective coordinates (As,Vs) are mutually closer than a given minimum, 
using a 2-norm measure of proximity. 

Another problem to be addressed is that of accommodating new scatterers as their amplitudes rise 
into significance. This is handled by constructing the lists of initial estimates of the Ts and Vs presented to 
the gradient algorithm in the current window location by simply appending to the lists evaluated in the 
previous window location the lists of all the significant scatterers appearing in the new window location, 
whether old or new. Most of the scatterers will then be represented twice in the lists, but after they have 
been subjected to the gradient algorithm, those represented twice will end up having essentially the same 
effective coordinates and the new ones are then eliminated by the clean-up routine. A unique 
identification number is attached to every scatterer found in each new data window location. The 
procedure described ensures that as long as the scatterer remains significant, it will retain this unique ID. 
And, of course, by virtue of the duplication of the lists, most IDs will end up being eliminated. 

TOTAL LEAST SQUARES PROCESSING 

One more potential noise-reduction technique that should be mentioned is that of so-called total 
least squares (TLS) processing [2,12,13]. The idea is that all the columns of all three of the mutually 
shifted matrices U0, U,, Uf are closely related. Specifically, each of these columns, apart from the 
additive noise it contains, is a different linear combination of the same S column vectors, one for each of 
the S scatterers. Accordingly, cleaner versions of them can be evaluated by using singular value 
decomposition to factor the block matrix [UQ    U,    Uf ] into the form 
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[U0    U,    Uf] = UL 

V ' V ' V ' Ml v21 K31 

'12 v22 K32 

.'13 V23 '33 . 

and then using the trio of square matrices Vn', V2l', and V31' in place of the trio U0, Ut, Uf in (3) to 
evaluate the matrices Rt and Rf . 

In tests of radar imaging conducted so far, the inclusion of TLS processing has produced no solid 
improvement. This is probably attributable to the fact that column-relatedness is already a key property in 
the processing, and is therefore essentially fully exploited without TLS processing. 
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